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Abstract. The algorithms and algorithmic ideas currently available for globally optimizing linear 
functions over the efficient sets of multiple objective linear programs either use nonstandard 
subroutines or cannot yet be implemented for lack of sufficient development. In this paper a 
Bisection-Extreme Point Search Algorithm is presented for globally solving a large class of such 
problems. The algorithm finds an exact, globally-optimal solution after a finite number of iterations. It 
can be implemented by using only well-known pivoting and optimization subroutines, and it is 
adaptable to large scale problems or to problems with many local optima. 
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1. Introduction 
T T n Assume that  k /> 2 is an integer, and that c~, c 2 , . . . ,  c k E R are row vectors. 

Le t  C be the k x n matrix whose ith row is given by c~', i = 1, 2 , . . . ,  k, and let X 
be a nonempty ,  compact  polyhedron in R n. We will assume without loss of  

generali ty that  X =  {x ~ RnlAx  <~ b, x ~>0}, where A is an m x n matrix of real 
numbers  and b E R m. Then the multiple objective linear programming problem 
( M O L P ) ,  written as 

VMAX:  C x ,  subject to x E X ,  

can be viewed as the problem of finding all solutions that are efficient in the sense 
of the following definition. 

D E F I N I T I O N  1.1. A point x ~ is said to be an efficient solution of problem 
( M O L P )  when x ~ E X, and whenever  Cx >i Cx ~ for some x E X, then Cx = Cx ~ 

An efficient solution is also often called a nondominated or Pareto-optimal 
solution. The  functions f~(x)= (cl, x ) ,  i=  1,2 . . . . .  k, are called the objective 
functions or criterion functions for problem (MOLP) .  Let  X E denote  the set of  all 
efficient solutions of problem (MOLP) .  
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Problem (MOLP) has been extensively studied and increasingly used as a 
decision aid for multiple criteria decision making (see, for instance, books and 
reviews by Evans [13], Rosenthal [25], Steuer [26], Yu [28], and Zeleny [29]). 
Many of the approaches for using problem (MOLP) to analyze situations with 
multiple objectives involve generating points in X E . Two of these, in particular, 
are quite commonly used. They are the vector max imiza t ion  approach and 
interactive approaches. In the vector maximization approach, either all of X e or 
all of the extreme points of X contained in X e is mathematically generated. The 
decision maker then examines the generated set and chooses a most preferred 
efficient solution. In the iiateractive approaches, the decision maker, with the aid 
of a computerized routine, iteratively generates selected points in X e until he 
finds one that he most prefers (for details concerning these two approaches, see 
[13], [26], [28]). 

The problem of main concern in this paper is the problem of optimizing a linear 
function over the efficient set X E of problem (MOLP) in the case where the 
vector of coefficients of the linear function is linearly dependent upon the rows of 
C. This problem, denoted henceforth as problem (PD), may be written 

m a x ( d , x ) ,  subject t o x ~ X E ,  

where d E R "  and, for some  w E R  ~, d r =  wTC. Let 0 denote the optimal 
objective function value for problem (PD). 

While research on problem (PD) has been sparse, the motivation for studying it 
stems from recent interest in two problems closely related to it. To define these 
problems, let g E R n and i E {1, 2 , . . . ,  k). The first problem, denoted problem 
(PI), may be written 

m a x ( g , x > ,  subject to x ~ X E .  

Since g can be linearly independent of the rows of C, problem (PI) subsumes 
problem (PD) as a special case. The second problem, denoted problem (PC), 
may be written 

min(ci, x) , subject to x C XE. 

Problem (PC) is a special case of problem (PD) since, with d r = (wi)7"C, where 
(w~) ~ = (0, 0 , . . . ,  0, -1 ,  0 , . . . ,  0) E R k has - 1  in its ith entry, problem (PD) 
yields problem (PC). 

Interest in problems (PI) and (PC) arose in the past two decades and has 
recently been intensifying. At least part of this interest is in response to some of 
the difficulties in using problem (MOLP) as a decision aid. For instance, Philip 
[23] and Benson [7] argued that in certain multiple criteria decision making 
situations, models of the form of problem (PI) are simply more appropriate than 
models of the form (MOLP). As an instance, Benson [7] gave a production 
planning example. In this example, a firm seeks a maximum-profit production 
plan under the constraint that the production plan yield a vector of employment 
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levels at the firm's k = 10 factories which is efficient. Benson [2] also explained 
how solving problem (PI) helps to avoid certain computational and practical 
burdens of using the generation method for problem (MOLP). 

Other authors, including Weistroffer [27], Dessouky, Ghiassi, and Davis [10], 
Isermann and Steuer [18], and Reeves and Reid [24], have pointed out several 
important uses of problem (PC) in multiple criteria decision making. They have 
shown, for instance, how solving problem (PC) can improve the performance of 
several of the interactive algorithms for problem (MOLP), aid the decision maker 
in setting goals and evaluating decisions, and help the decision maker to decide 
how to rank the objective functions of problem (MOLP) according to their 
relative importance. 

The motivation for solving problem (PD) comes from the same sources as the 
motivations for solving problems (PI) and (PC). This is because many of the 
multiple criteria decision making situations which can be represented as instances 
of problem (PI) are also instances of problem (PD), and any algorithm which can 
successfully solve problem (PD) can clearly solve problem (PC) as well. 

Mathematically, problem (PD) can be classified as a global optimization 
problem (also called a nonconvex programming problem), since its feasible region 
X e is, in general, a nonconvex set [15], [16], [21]. For the same reason, problems 
(PI) and (PC) are also global optimization problems. Such problems possess local 
optima, frequently large in number, which need not be globally optimal. 

A few algorithms and algorithmic ideas have been suggested for finding globally 
optimal solutions for problems (PI) and (PC). Philip [23] and Bolintineanu [8] 
have described procedures using local search and cutting planes which could 
potentially solve problem (PI). Isermann and Steuer [18] independently suggested 
using the same approach as Philip, but for problem (PC). However, in all three 
cases, certain mathematical details necessary for implementing the procedures are 
not explained. More recently, Benson [3] [5] has proposed two implementable 
relaxation algorithms for solving problem (PI). The main computational burden 
in these algorithms involves solving either one linear program with additional 
bilinear constraints or one system of linear and bilinear equations for an improved 
solution at each iteration. Other studies of problems (PI) and (PC) or of 
generalizations of them have been either theoretical in nature or have searched 
for solutions which are not necessarily globally optimal (see, for instance, [7], [9], 
[10]). 

When d r =  wrC for s o m e  w ~ R  k such that w > 0 ,  it is well-known that 
problem (PD) can be solved by solving the linear program which maximizes 
(d, x)  over X. But in applications where no such strictly positive vector w exists 
(e.g. problem (PC)), this approach fails. 

No algorithm designed to globally solve problem (PD) has to date been 
developed. Study of problem (PD) has been sparse, and confined to theoretical 
results only [7]. 

In this paper, a Bisection-Extreme Point Search Algorithm is developed for 
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finding a globally optimal solution for problem (PD). The algorithm has the 
following features: 

(a) it is a finite procedure; 
(b) it finds an exact, globally optimal solution; 
(c) it is implementable; 
(d) it uses only well-known pivoting and optimization subroutines; 
(e) its main computational burden involves maximizations of convex functions 

over the compact polyhedron X; 
(f) it frequently does not require carrying out the convex maximizations to 

optimality; 
(g) it is adaptable to large-scale problems. 

Crucial to the development of the algorithm is the fact that d is linearly dependent 
upon the rows of C. 

The next section presents the theoretical prerequisites for the algorithm. 
Section 3 gives a statement of the algorithm and proves its convergence prop- 
erties. In Section 4 guidelines and suggestions for implementing the algorithm are 
discussed. Some concluding remarks are given in Section 5. 

2. Theoretical Background 

Let Xex denote the set of extreme points of the polyhedron X. The following 
result follows immediately from Theorem 4.5 in Benson [7]. 

THEOREM 2.1. Problem (PD)  has an optimal solution which belongs to Xex. 

The Bisection-Extreme Point Search Algorithm to be developed will exploit the 
property given in Theorem 2.1 to find an optimal solution to problem (PD) 
belonging to X e f3 Xex in a finite number of iterations. 

An important property of problem (PD) that is crucial to the algorithm is given 
in the next result. Let e E R k denote the vector whose entries are each unity. 

THEOREM 2.2. There exists a positive real number 1V1 such that for any M >- lf/1, 
0 = t*, where t* is the smallest value o f  the parameter t E R in the problem (Wt) 

given by 

= max( A, Cx) - (b ,  u) - tv 

subject to 

such that 1r t = O. 

A x ~  b 

u~A + vd r -  A r c ~ o  

r 
A ~ e  

x, u, o ~ 0  
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Proof. From Theorem 4.4 of Benson [7], there exists an ~ / >  0 such that with 
M = M in problem (W~), 0 = t*, where t* is as described in the theorem. It is easy 
to see from the proof of Theorem 4.4 of [7], which is given in [6], that if the result 
holds for some particular positive value of M, then it also holds for all values of M 
exceeding that value. �9 

Theorem 2.2 is not valid when d is not linearly dependent upon the rows of C. In 
such cases, the value t* described in the theorem could strictly underestimate the 
optimal value 0 of problem (PD), rather than equal it, as shown by the following 
example. 

E X A M P L E  2.1. Let X =  {x @ R3[Ax <- b, x ~>0}, where 

['0 ' ~ A =  0 ' 

and let C and d be given by 

 =[10 0 00 ? [_1] 
1 , d =  - 1  . 

1 

Then it is easy to show that x *r = (0, 2, 4) E X e N Xex is an optimal solution for 
problem (PD) with (d,  x*) = 0 = 2. Algebraic reasoning, on the other hand, can 
be used to conclude that for every M >/20, for instance, if t ~  > - 2 ,  then the 
optimal value ~ of problem (Wt) equals 0, while ~rt = + ~  for all t < -2 .  Thus, the 
application of Theorem 2.2 to this example yields the erroneous conclusion that 
0 = - 2 .  This false conclusion is due to the fact that d is not linearly dependent 
upon the rows of C. Therefore, Theorem 2.2 is not valid unless d is linearly 
dependent upon the rows of C. 

For each value of t E R, problem (W,) given in the statement of Theorem 2.2 
belongs to a class of global optimization problems called bilinear programming 
problems (see [16], [21], and references therein). By further studying this bilinear 
program, one can begin to describe the behavior of its optimal value ~r, as t varies 
over R. The next result accomplishes this. Let t m denote the optimal value of the 
linear program 

m i n ( d , x ) ,  subject to x E X .  

C O R O L L A R Y  2.1. Let M be chosen as in Theorem 2.2, and consider the 
function 7r: R ~ R defined by 7r(t)= ~r, for each t @ R, where 7r~ is defined in 
Theorem 2.2. Then: 

(a) ,n- is nonnegative on R; 
(b) It(t) = + ~  for all t <tm ; 
(c) ~'(t) is finite for all t >i t m ; 
(d) t* >I tm, and zr(t) = 0 for all t >i t*; 
(e) ~r(t) > 0 for all t < t*; 
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and 
(f) ~- is nonincreasing on R. 
Proof. Using the framework established in the proof given in [6] of Theorem 

4.4 of [7], for any t E R, let 

and let 

Xt={xeXl<d,z><t}, 

A={h~Rklh>---e, ( e ,h )=M}.  

Now define 0: A---> R and 4: A x R--> R by 

~(h) = max( h, Cx), subject to x E X, 

and 

4(A, t) = max(h ,  Cx), subject to x E X, 

for each h E A and t E R, respectively. Then define a function ~ :  R---> R by 

~'(t) = sup [0(A) - 4(A, t)] 
A@A 

for each t ~ R. 
Notice that for any t E R, X t # ~ if and only if t i> t m . Also, it was shown in [6] 

that for each t E R, ~'(t) is finite if and only if r is finite, and zr(t)= ~(t) 
whenever these numbers are finite. 

Choose any t E R. Then Xt C_ X, so that for each h E A, 0(h) t> 4(h, t). From 
the definition of ~-, this implies that ~(t)/> 0. Hence, if ~r(t) is finite, ~-(t)/> 0. 
From Theorem 2.2, ~-(t*)=0. This implies that problem (W,.), and hence 
problem (W~), has a feasible solution. Therefore, if zr(t) is not finite, or(t) = + %  
and part (a) is established. 

Suppose now that t <  tm- Then X t = ~, so that by definition, 4(h, t ) =  -oo for 
each h E A. Since X is nonempty and compact, -oo < 0(X)< oo for each h ~ A. 
The latter two statements imply that  ~?(t) = +~.  Hence zr(t) is not finite. By part 
(a), ~r(t)= +oo must hold, thus establishing (b). 

Now suppose that t 1> t m. Then X and X, are nonempty, compact polyhedral 
sets. Therefore, from linear programming theory (see, for instance, Murty [20]), 
for each h ~ R k, 

0(h) : max{(h,  Cxl>, (h ,  Cx2),. . . ,  (h, Cxq>} 

and 

4(h, t ) =  max{(h,  Cxlt), (h, Cx2t),..., (h ,  Cxt) } 

where x i, i -- 1, 2 . . . . .  q, and x~, ] = 1, 2 . . . .  r, are the extreme points of X and 
Xt, respectively. From Theorem 8.7 in [20], this implies that the functions 0(" ) 
and ~( . ,  t) are continuous on R k. Therefore, since A is a nonempty compact set, 
the supremum in the definition of ~?(t) is achieved and r is a finite number. 
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Hence  rr(t) is a finite number and (c) is established. 
Suppose now that t >I t*. By Theorem 2.2, ~r(t*) = 0. From parts (b) and (c), 

this implies that t* 1> t,~. Therefore t >>- tm, SO that X t # 0 and, by part (c), ~r(t) is 
finite. Since ~-(t*) and ,r(t) are finite numbers, ~ ( t * ) =  ~-(t*)= 0, and ~r(t)= 
~-(t). 

Since t >/t*, At. C_ X r Therefore, for each A E A, by definition of 0, 0(A, t*) ~< 

0(A, t). This implies that for each A E A, 0(A) - 0(A, t) ~< 0(A) - 0(A, t*). From 
the definition of ~', this implies that ~-(t) ~< ~'(t*) = 0. Since It(t) = ~(t) ,  it follows 
that 7r(t) <~ 0. By part (a) ~r(t) >I 0. Therefore, 1r(t) = 0 and part (d) is established. 

Assume now that t < t*. By Theorem 2.2, It(t) # 0. From part (a) this implies 
that ~r(t)> 0, so that part (e) follows. 

Part (f) will follow from the previous parts once it is shown that 7r is 
nonincreasing on [tm, t*]. Towards this end, choose t 1 , t 2 E R such that t m ~< t 1 < 
t 2 ~ t*. From part (c), it(t1) and It(t2) are finite numbers. Therefore,  ~-(t l)= 
~( t l )  a n d  It(t2) = ~(t2). Since t I < t2, Xtl C_ X,2. Therefore,  for each A ~ A, 
0(A, tl)~<0(A, t2). This implies that for each A ~ A ,  0 ( A ) - 0 ( A ,  tl)~>0(A) - 
0(A, t2). From the definition of ~, it follows that ~-(tl)~> ~'(t2). Since ~(ti)= 
7r(ti), i= 1, 2, part (f) is established. �9 

In the Bisection-Extreme Point Search Algorithm to be presented for problem 
(PD) ,  the question of whether ~-, = 0 or ~-, > 0 must be answered for various 
values of t satisfying t >i tin. The following result gives another definition of % 
when t >i tin. 

T H E O R E M  2.3. Let t E R  satisfy t>~ tm, and assume that M~>max{k, 33/}, 
where M is chosen as in Theorem 2.2. Then the value of  7r, in problem (Wt) equals 
the optimal value of  the problem (V,) given by 

m a x h , ( x ) ,  subject to Ax<-b , x>lO, 

where h, : Rn--> R is the continuous piecewise linear convex function defined by 

h,(x) = max(A, Cx} - (b, u) - t v  

subject to 

uTA + vd T -  A T c ~ o  

( e , A } = M  

A~>e 

u, o~>0 

for each x E R". 
Proof. Let x E R' .  We first show that since t/> t m and M ~> k, h,(x) is a finite 

number.  Since t and x are fixed, the problem defining h,(x) is a linear program- 
ming problem (LP). By duality theory of linear programming [20], ht(x ) equals 
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the optimal value of the dual linear program to problem (LP), i.e., 

h, (x)  = min M y  - (e ,  s )  

subject to Cy + e3" - s >i Cx (1)  

A y  ~ b (2) 

dry<~ t  (3) 

Y , s>~O.  (4) 

Since t >1 tin, X t :i ~ O. By choosing any fixed y E X,,  s = 0, and 3' E R sufficiently 
large, the constraints (1)-(4) are satisfied. Therefore h,(x)  < + ~. Now let y, 7, 
and s be any points which together satisfy (1)-(4).  Then from (1), for each 
i = 1 , 2  . . . .  , k ,  

3" - s i >i (Cx  - Cy)i . (5) 

From (2)-(4) ,  y E X t. Since X t is compact, this together with (5) implies that 
there exist real numbers ai ,  i = 1, 2 , . . ,  k such that (3" - si)/> ai, i = 1, 2 , . . . ,  k. 
Summing these k inequalities yields 

k 3 " - ( e , s > > ~ a ,  

where a = E~= 1 ai. By rearranging the last inequality, it follows that 

3 ' ~ ( a  + ( e , s ) ) / k .  

Since M > 0, this implies that 

M y  >t ( M / k ) ( a  + (e ,  s ) ) .  (6) 

From (6), it follows that 

M3" - (e ,  s) >I ( M / k ) ( a  + (e ,  s ) )  - (e ,  s )  

= ( M / k ) a  + [ ( M / k )  - 1](e, s) 

>i ( M I k ) a  

> - - o o ,  

where the second-to-last inequality follows from M 1> k > 0 and s I> 0. Since y, % 
and s were arbitrary points satisfying (1)-(4),  we conclude that h t (x  ) >--oo.  

Together with h,(x) < + %  this implies that h,(x)  is a finite number. 
From linear programming theory [20], since h,(x)  is a finite number defined as 

the optimal value of linear program (LP), 

ht (x  ) = max{((Ai) rc ,  x)  - (b ,  u i) - tvil  i =  1 ,2  . . . .  , p }  , 

where (A i, u ~, v~), i = 1, 2 . . . .  , p are the extreme points of the polyhedron 
defining the feasible region of linear program (LP). This implies that h t : R n ~ R 

is a piecewise linear convex function [20, Theorem 8.7]. Therefore, h, is continu- 
ous o n  R n. 
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Since X is nonempty and compact and h, is continuous on R", the optimal value 
fit of problem (Vt) is finite. By the definitions of problem (V~), of ht,  of X, and of 
7r t , since M/> )f/, 

fit = max ht (x ) ,  subject to x E X 

= max {max( )t, Cx) - (b ,  u )  - tv}  
x E X  

subject to utA + vd r -  ArC >I 0 

(e, A) = M  

A~>e 

u , v ~ O  

= ~ ,  

and the proof is complete. 

From Corollary 2.1 and Theorem 2.3, if t >I t in ,  r is nonnegative and finite, and it 
can be calculated by maximizing the continuous convex function h t " R n ~ R over 
the nonempty compact polyhedron X. Although such a calculation involves 
solving a global optimization problem, it can be accomplished by any of a number 
of algorithms now available for convex maximization [16], [21], [22]. Crucial to 
the applicability of these algorithms is the fact that h t is continuous over R". 

To motivate the final background result, it is necessary to consider one of the 
procedures used in the Bisection-Extreme Point Search Algorithm for problem 
(PD). The algorithm needs to answer the question of whether 7r, = 0 or 7r, > 0 for 
various values of t>~ tm. From Theorem 2.2 and Corollary 2.1, if ~r t = 0, then 
t/> 0, while if r t > 0, t < 0. In the latter case, by Theorem 2.1 and the definition of 
O, there exists at least one point s E X e N Xex such that (d,  s  > t. The algorithm 
will use the next result to find such a point s when 75 > 0. 

T H E O R E M  2.4. Let t E R satisfy t >1 t in ,  and assume that M >! max{k, )r 
where ift is chosen as in Theorem 2.2. Then: 

(a) Problem (Vt) defined in Theorem 2.3 has an optimal solution which belongs 
tO Xex; 

(b) I f  ht(.~ ) > 0 for  some feasible solution ~ for  problem (Vt), then 
(i) 7r, > O, 

(ii) t < O, 
and 
(iii) i f  ( )t, ft, 6) is any optimal solution to the linear program given in 

Theorem 2.3 whose optimal value defines ht(~), then for  any optimal 
extreme point solution E to the linear program (Px) given by 

max(ATC, x)  , subject to x E X ,  

s and ( d , s  >t .  
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Proof. From Theorem 2.3, for t and M as chosen in Theorem 2.4, problem 
(V,) involves maximizing the continuous convex function h, over the nonempty 
compact polyhedron X. From Martos [19], this implies that problem (Vt) has an 
optimal solution in Xex, and part (a) is established. Part (b)(i) follows directly 
from Theorem 2.3 and the definition of problem (Vt). Part (b)(ii) then follows 
from part (b)(i),  Theorem 2.2, and Corollary 2.1. 

To establish part (b)(iii), let (h,  ~, ~3) be any optimal solution to the linear 
program given in Theorem 2.3 whose optimal value defines ht(2 ). Since h~(~) > 0, 
(,~, C~) - (b ,  a)  - t6) > O, and the optimal value 71 of the linear program 

max(,( ,  C2) - (b, u) - tv 

subject to urA + vd r >1 ArC 

it, v ~ 0  

is positive. Notice that 3'1 = (A, C~) - 3'2, where 3'2 is the optimal value of the 
linear program 

rain(b,  u)  + W 

subject to urA + vd r >1 ArC 

U,o~O.  

By duality theory of linear programming [20], Y2 equals the optimal value of the 
linear program 

max(h ,  Cy) 

subject to Ay <~ b 

( d , y ) < - t  

y>~O. 

Since 3'1 > 0 and the feasible region of the latter problem is X t , ( A, C~) exceeds 
the optimal value 3'2 of the linear program (Pt) given by 

max( h, Cy) , subject to y E X t . 

Now assume that x is any optimal extreme point solution to the linear program 
(Px) Then $ @ Xex and, since h ~> e > 0, ~ @ X e [23]. In addition, since ~ is a 
feasible solution for problem (Px), the optimal value Y3 of problem (Px) satisfies 
3"3 >~ ( A, C~). Since ( h, C~) > 3"2, this implies that 3"3 > Y2. It follows from this 
inequality that (d,  s  > t must hold, for if it did not, then J? would be a feasible 
solution to problem (Pt), so that 3'2 ~ ( /~' C)~) = 3"3 would hold. �9 

Theorem 2.4 is instrumental in guaranteeing that the algorithm to be presented 
finds an exact, globally optimal solution for problem (PD) after a finite number of 
iterations. 
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3. The Bisection-Extreme Point Search Algorithm 

Assume henceforth in this paper that M is chosen as in Theorems 2.3 and 2.4. 
The  goal of the Bisection-Extreme Point Search Algorithm is to find an optimal 
extreme point solution for problem (PD) in a finite number of iterations. A 
bisection search is used in the algorithm to find progressively smaller subintervals 
of R containing 0. For  each t E (L, U) chosen during the bisection search, where 
[L,  U] is the current subinterval of R known to contain 0, the convex maxi- 
mization problem (V~) defined in Theorem 2.3 is used to determine whether 
7r t = 0 or r > 0. When ~-, = 0, U is decreased to t. When 7r t > 0, an extreme point 
search procedure is invoked to update L. This procedure finds a new point x INc, 

called an incumbent solution, which belongs to X E fq Xex and satisfies ( d, x ~Nc) > 
t. The  value of L is then increased to (d ,  x~NC). A test is performed,  at times 
partially determined by the user of the algorithm, to determine whether 7r L = 0 or 
~r L > 0. When 7r L = 0, x ~Nc is an (exact) optimal solution for problem (PD),  and 
the algorithm terminates. 

One of the procedures repeatedly used by the algorithm involves finding a local 
opt imum for problem (PD) by a standard search procedure similar to those used 
previously, for instance, in [8] and in [23]. To facilitate the presentation of the 
algorithm, this procedure will be described first. Towards this end, consider the 
following definition. 

D E F I N I T I O N  3.1. A point x ~ E X E N Xex is said to be a locally optimal solution 
for problem (PD) when 

( d , x  ~  i) for a l l i E Q e ,  

where x i, i = 1, 2 , . . . ,  q, are the elements of X e A Xex adjacent to x ~ in the 
polyhedron X, and Qe c {1, 2 . . . .  q} indexes those elements x ~ for which the 
edge connecting x ~ and x ~ lies in X e . 

We can now state the Local Optimum Search Procedure.  In this procedure,  it is 
assumed that y0 E X E C) Xex. 

Local Optimum Search Procedure 
w Step 1. Set w=O, i=O, a n d E  o = 0 .  

Step 2. If possible, find an edge EiW+l of X emanating from yW such that 
E w  - -  w W . , i+1 C X e and Ei+l ~ E j, j = 0, 1 , . .  i. If no such edge exists, then STOP: yW is 
a locally optimal solution for problem (PD).  Otherwise, find the extreme point 

w Y~+~ ~ yW of X on the edge E w i+ 1 and continue. 
Step 3. If (d, yi~+l) > ( d ,  yW), set yW+l=yW+~, w = w + l , i = 0 ,  a n d E  o =  

and go to Step 2. Otherwise, set i = i + 1 and go to Step 2. 
The  algorithm may now be stated as follows. 
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Bisection-Extreme Point Search Algorithm for Problem (PD) 
Initialization Step. Find any point x ~ E Xe N Xex. With x ~ as a starting point, 

use the Local Optimum Search Procedure to find a locally optimal solution 
n0 
x E X E A Xex for problem (PD).  Set _M = (d,  2 ~ and calculate 

~ I = m a x ~ d , x ) ,  subject t o x ~ X .  

Choose a parameter  p E (0, 1], set F L A G  = OFF, L = _M, U = A4, x INc = 2 ~ and 

k = 0, and go to Iteration k. 
Iteration k, k >10. 
Step k . l . ( i )  If F L A G  = ON, go to Step k.2. Otherwise, go to Step k. l( i i ) .  
(ii) If (U - L )  > p(At - _M), go to Step k.3. Otherwise, set F L A G  = ON and 

go to Step k.2. 
Step k.2. Use an appropriate convex maximization algorithm for problem (Vt) 

with t = L to determine whether ~'L = 0 or 7r L > 0. If ~r L = 0, STOP: x INc is an 
optimal solution for problem (PD),  and 0 = L. If 7r L > 0, continue. 

Step k.3. Set t = ( L  + U)/2. Use an appropriate convex maximization al- 
gorithm for problem (Vt) to determine whether 7r t = 0 or ~'t > 0. If ~'t = 0, go to 
Step k.4. If ~'t > 0, find any feasible solution 2 for problem (Vt) such that hi(2 ) > 0 
and go to Step k.5. 

Step k.4. Set U= t and k = k + 1. If F L A G =  OFF, go to Step k. l . ( i i ) .  If 
F L A G - - - O N ,  go to Step k.3. 

Step k.5. Find any optimal solution (A, ~, ~) to the linear program given in 
Theorem 2.3 whose optimal value defines ht(2 ). 

Step k. 6. Find any extreme point optimal solution x k to the linear program 

(Px) given by 

max(~VC, x) , subject to x E X .  

With x k as a starting point, use the Local Optimum Search Procedure to find a 
locally optimal solution 2 k E X E fq X~x for problem (PD).  

Step k. 7. Set x INc = 2  k, L = (d, xlNC), k =  k +  1, and go to Iteration Step k. 

The parameter  p chosen by the user helps establish the iteration at which the 
termination test in step k.2 first is invoked. When F L A G  = OFF, no termination 
tests are performed. As soon as U and L satisfy (U - L )  ~< p(Al - M),  F L A G  is 
set equal to ON. The termination Step k.2 is then immediately invoked for the 
first time. Subsequently, F L A G  keeps the value ON, and each time that the value 
of L is changed, the termination Step k.2 is executed. 

Steps k.3 - k.7 execute the bisection search procedure. Notice that when 7r t = 0 
in Step k.3, U is simply decreased to t in Step k.4, and the algorithm moves to the 
next iteration. But when 7r t > 0 in Step k.3, the extreme point search procedure is 
used to update L. This procedure begins in Step k.3 by finding a feasible solution 

for problem (Vt) such that ht(2 ) > 0. Next, Steps k.5 and k.6 use the results in 
Theorem 2.4 to find an efficient extreme point x k which satisfies (d ,  x k) > t. The 
Local Optimum Search Procedure is then invoked to find an efficient extreme 
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point ~k which satisfies (d, ~k)>i (d, x k) > t. In Step k.7, L is increased to 
(d, ~k), and 2k becomes the new incumbent solution. 

The convergence properties of the Bisection-Extreme Point Search Algorithm 
are given in the next result. 

THEOREM 3.1. The Bisection-Extreme Point Search Algorithm finds an exact, 
globally optimal solution for problem (PD) after a finite number of  iterations. 

Proof. From the definitions of _M and 5), 0 C [_M, h)], and each value of 
t - - ( L  + U)/2 in Step k.3 satisfies t>~ tm. Therefore, by Theorem 2.2 and 
Corollary 2.1, for each such t, either ~r t = 0 and t I> 0, or 7r, > 0 and t < 0. In the 
former case, Step k.4 is invoked and the new value of U is set equal to t. Thus, 
Step k.4 is valid and reduces the interval [L, U] by one-half. In the latter case, 
Steps k.3 and k.5-k.6 are used to find a point 2 ~ @ X E N Xex , and the new value 
of L is set equal to (d, 2k). Since 2 k is a feasible solution for problem (PD), this 
new value is a valid lower bound for 0. Furthermore, from Theorem 2.4 and the 
Local Optimum Search Procedure, (d, 2 ~) > t, so that the interval [L, U] is 
reduced by at least one half. 

Since 0 < p ~ 1 and each iteration of the algorithm reduces the interval [L, U] 
containing 0 by one-half or more, after some finite number of iterations, the 
inequality ( U -  L)~< p(2~-  _M) is satisfied. Therefore, the value of FLAG in 
Step k.l(ii) is set equal to ON, and the termination test in Step k.2 is performed 
for the first time. Subsequently, it is performed each time that the value of L is 
increased. 

If 7r L = 0 is eventually detected in the termination test in Step k.2 during some 
iteration k, then, from Theorem 2.2 and Corollary 2.1, L I> 0. Since L <~ 0 always 
holds, this implies that 0 = L. This, together with x mc E X e and (d, x ~Nc) = L, 
implies that x ~Nc is an optimal solution for problem (PD). Therefore, the 
algorithm, if it terminates, finds an exact, globally optimal solution for problem 
(PD). 

We now show that the algorithm generates an L value satisfying ~'t = 0 after 
some finite number of iterations. To show this suppose, to the contrary, that this 
is not the case. Then for every value of L generated by the algorithm, ~'t > 0. The 
number of distinct values of L generated by the algorithm is either (a) finite or (b) 
infinite. 

Case (a): The number of distinct values of L generated by the algorithm is 
finite. Let/~ be the largest of these values. Then from Theorem 2.2 and Corollary 
2.1, since ~-s > 0, s < 0. Because no larger vaLues than s for L are generated by 
the algorithm, for each t generated via Step k.3 in iterations subsequent to the 
one where s is generated, ~-, = 0. This implies that in each of these subsequent 
iterations, by using Steps k.3 and k.4, the algorithm reduces the interval [L, U] ! 
that existed when s was generated by one-half by decreasing U = U. Therefore, 
since /~ < 0, the upper bound U for the interval [/~, U] must eventually satisfy 
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U < 0. But this contradicts the validity of the upper bounds. Therefore this case 
cannot hold. 

Case (b): The number of distinct values of L generated by the algorithm is 
infinite. Let L1, L2, L 3 , . . .  represent these L values, where L i <  Li+l,  i =  

1, 2 , . . .  For each L,. generated, an efficient point yi in X~x is generated in Step k.6 
which satisfies ( d, yi ) = Li" Therefore, X e fl Xex contains an infinite number of 
distinct points. But from linear programming theory [20], this is impossible. 
Therefore, this case cannot hold either. 

Since neither Case (a) nor Case (b) can hold, it follows that the algorithm 
generates an L value which satisfies ~r L = 0 after some finite number of iterations. 
Coupled with the facts that after some finite number of iterations, the termination 
test in Step. k.2 is performed, and that it is subsequently performed whenever a 
new value of L is found, this implies that the algorithm terminates after a finite 
number of iterations, and the proof is complete. �9 

4. Implementation Issues 

The Bisection-Extreme Point Search Algorithm can be implemented using only 
well-known pivoting and optimization subroutines. In this section, some sugges- 
tions and guidelines are briefly given for accomplishing this implementation. An 
examination of the algorithm reveals that it calls for the following: 

(a) solving linear programs; 
(b) finding an initial point x ~ E X e A Xex; 

(c) accomplishing the Local Optimum Search Procedure; 
(d) deciding for various values of t I> t,~ whether ~r, = 0 or ~t > 0; 
(e) finding, when ~r t >0 ,  a feasible solution 2 for problem (V~) such that 

> 0. 

Item (a) can be readily accomplished by using either the well-known simplex 
method or Karmarkar's method [1] [20]. Several simple methods involving the 
simplex method and/or simplex-type pivoting operations can be used to imple- 
ment item (b) (see [4], [11], [26], and references therein). 

To implement item (c), for any y E X e N Xex, a means of identifying each edge 
of X emanating from y which lies in X e must be available. In addition, for each 
such edge, the extreme point 17 ~a y of X on the edge must be identified. Various 
procedures have been developed which can accomplish these tasks. Most of them 
were developed in conjunction with algorithms for generating all points in 
X e C'l X~x (see [12], [14], [17], [26] and references therein). These procedures use 
linear programming and simplex-type pivoting operations. Although any one of 
them will suffice in implementing item (c), computational experience with the 
Evans-Steuer method [14] [26] is favorable and seems particularly extensive. 

To implement items (d) and (e), a means is needed for finding the optimal 
value ~r t of the convex maximization problem (Vt) for various values of t >! tm. In 
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addition, when ~r t > 0, a feasible solution 2 for problem (V~) with a positive 
objective function value ht(2) must be found. Since problem (Vt) is a global 
optimization problem, it is anticipated that the main computational burden in 
executing the algorithm will involve implementing items (d) and (e). Some care 
should therefore be exercised in choosing the most efficient means available for 
implementing these items. In addition, the number of different problems (V~) that 
the Bisection-Extreme Point Search Algorithm must consider should be kept to a 
minimum. Following are some general suggestions and guidelines for accomplish- 
ing these tasks. 

Assume that t ~  tm. From Theorem 2.3, problem (Vt) involves the maxi- 
mization of a continuous convex function h,: Rn---~ R over a nonempty, compact 
polyhedron. Since h~ is continuous on R n, a wide variety of general-purpose 
algorithms for solving this global optimization problem is available (see [15], [16], 
[21], [22] and references therein). Many of these algorithms are finite. While the 
particular algorithm chosen will depend upon many factors, two factors of 
particular computational importance in making this choice should be considered. 

First, in choosing an algorithm for solving problem (V~), one should consider 
how the algorithm detects that ~r, > 0. For instance, many algorithms which use 
relaxation or extreme point ranking cannot detect that ~ > 0 until the algorithm 
has run to completion and has found an optimal solution. Other algorithms, such 
as those using branch and bound, can detect that ~ > 0  prior to finding an 
optimal solution by first finding a feasible solution 2 such that h , (2)> 0. Al- 
gorithms of the latter type may b e  preferred, since they often will accomplish 
items (d) and (e) when ~rt > 0 without having to solve problem (lit) to optimality. 

A second consideration in choosing an algorithm for solving problem (V~) 
concerns the potential for using information generated from solving a previous 
problem to help solve a later problem. The problems (V~) differ only in the 
parameter t C R. Therefore, for some algorithms, the potential may exist to 
reduce solution times for the problems (11,) by using information generated from 
problems already solved. Such algorithms may be preferable to those for which no 
such potential exists. 

The parameter p E (0, 1] chosen by the user of the algorithm is intended to 
keep to a minimum the number of different convex maximization problems (V~) 
that need to be considered. Each time the termination test in Step k.2 is 
performed, a new problem (VL) must be considered. For problems which have 
many local optima which are not global, it may be wise to choose a rather small 
value of p (e.g. p < 1/4) in order to avoid needless termination tests in earlier 
steps of the algorithm. For problems with fewer local optima, larger values of p 
seem preferable. Of course, the user has no guaranteed means of knowing in 
advance the number of local optima that exist in problem (PD). Indirect 
measures, such as the values of k, m, n, )~, and _M, however, may sometimes give 
some indication of this number. 
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5. Concluding Remarks 

We have presented a Bisection-Extreme Point Search Algorithm for problem 
(PD) which finds an exact optimal solution after a finite number of iterations. The 
algorithm is the first to be suggested for globally solving problem (PD). In 
contrast to algorithms suggested for the more general problem (PI) or for the 
special case (PC), the Bisection-Extreme Point Search Algorithm can be im- 
plemented by using only well-known pivoting and optimization subroutines. 
Furthermore, the bisection search procedure used in the algorithm makes it 
adaptable to large-scale problems or to problems with many local optima. Finally, 
efficient implementation of the algorithm can yield important computational 
benefits. For these reasons, the algorithm is a potentially important practical tool 
for solving problem (PD) and, hence, for multiple criteria decision making. 
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